Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nature ; 599(7884): 256-261, 2021 11.
Article in English | MEDLINE | ID: mdl-34707286

ABSTRACT

The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.


Subject(s)
Archaeology , Genome, Human/genetics , Genomics , Human Migration/history , Mummies/history , Phylogeny , Agriculture/history , Animals , Cattle , China , Cultural Characteristics , Dental Calculus/chemistry , Desert Climate , Diet/history , Europe , Female , Goats , Grassland , History, Ancient , Humans , Male , Milk Proteins/analysis , Phylogeography , Principal Component Analysis , Proteome/analysis , Proteomics , Sheep , Whole Genome Sequencing
2.
Mol Biol Evol ; 38(11): 4908-4917, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34320653

ABSTRACT

Although Uzbekistan and Central Asia are known for the well-studied Bronze Age civilization of the Bactria-Margiana Archaeological Complex (BMAC), the lesser-known Iron Age was also a dynamic period that resulted in increased interaction and admixture among different cultures from this region. To broaden our understanding of events that impacted the demography and population structure of this region, we generated 27 genome-wide single-nucleotide polymorphism capture data sets of Late Iron Age individuals around the Historical Kushan time period (∼2100-1500 BP) from three sites in South Uzbekistan. Overall, Bronze Age ancestry persists into the Iron Age in Uzbekistan, with no major replacements of populations with Steppe-related ancestry. However, these individuals suggest diverse ancestries related to Iranian farmers, Anatolian farmers, and Steppe herders, with a small amount of West European Hunter Gatherer, East Asian, and South Asian Hunter Gatherer ancestry as well. Genetic affinity toward the Late Bronze Age Steppe herders and a higher Steppe-related ancestry than that found in BMAC populations suggest an increased mobility and interaction of individuals from the Northern Steppe in a Southward direction. In addition, a decrease of Iranian and an increase of Anatolian farmer-like ancestry in Uzbekistan Iron Age individuals were observed compared with the BMAC populations from Uzbekistan. Thus, despite continuity from the Bronze Age, increased admixture played a major role in the shift from the Bronze to the Iron Age in southern Uzbekistan. This mixed ancestry is also observed in other parts of the Steppe and Central Asia, suggesting more widespread admixture among local populations.


Subject(s)
Archaeology , Human Migration , DNA, Ancient , Farmers , Genome, Human , History, Ancient , Humans , Iran , Uzbekistan
3.
J Hum Genet ; 65(12): 1125-1128, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32653893

ABSTRACT

The genetic history of Southern East Asians is not well-known, especially prior to the Neolithic period. To address this, we successfully sequenced two complete mitochondrial genomes of 11,000-year-old human individuals from Southern China, thus generating the oldest ancient DNA sequences from this area. Integrating published mitochondrial genomes, we characterized M71d, a new subhaplogroup of haplogroup M71. Our results suggest a possible early migration between Southern China and mainland Southeast Asia by at least 22,000 BP.


Subject(s)
Asian People/genetics , DNA, Ancient/analysis , DNA, Mitochondrial/genetics , Genome, Mitochondrial/genetics , Asia, Southeastern , China/epidemiology , DNA, Mitochondrial/classification , Haplotypes/genetics , History, Ancient , Humans
4.
Front Immunol ; 10: 1126, 2019.
Article in English | MEDLINE | ID: mdl-31244823

ABSTRACT

NKT cells are CD1d-restricted innate-like T cells expressing both T cell receptor and NK cell markers. The major group of NKT cells in both human and mice is the invariant NKT (iNKT) cells and the best-known function of iNKT cells is their potent anti-tumor function in mice. Since its discovery 25 years ago, the prototype ligand of iNKT cells, α-galactosylceramide (α-GalCer) has been used in over 30 anti-tumor clinical trials with mostly suboptimal outcomes. To realize its therapeutic potential, numerous preclinical models have been developed to optimize the scheme and strategies for α-GalCer-based cancer immunotherapies. Nevertheless, since there is no standard protocol for α-GalCer delivery, we reviewed the preclinical studies with a focus on B16 melanoma model in the goal of identifying the best treatment schemes for α-GalCer treatment. We then reviewed the current progress in developing more clinically relevant mouse models for these preclinical studies, most notably the generation of new mouse models with a humanized CD1d/iNKT cell system. With ever-emerging novel iNKT cell ligands, invention of novel α-GalCer delivery strategies and significantly improved preclinical models for optimizing these new strategies, one can be hopeful that the full potential of anti-tumor potential for α-GalCer will be realized in the not too distant future.


Subject(s)
Galactosylceramides/administration & dosage , Immunotherapy , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Neoplasms/immunology , Neoplasms/therapy , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Humans , Immunomodulation/drug effects , Immunotherapy/methods , Mice , Neoplasms/pathology , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL